Thalamic activity and biochemical changes in individuals with neuropathic pain following spinal cord injury
نویسندگان
چکیده
There is increasing evidence relating thalamic changes to the generation and/or maintenance of neuropathic pain. We have recently reported that neuropathic orofacial pain is associated with altered thalamic anatomy, biochemistry and activity, which may result in disturbed thalamocortical oscillatory circuits. Despite this evidence, it is possible that these thalamic changes are not responsible for the presence of pain per se, but result as a consequence of the injury. To clarify this subject, we compared brain activity and biochemistry in 12 people with below-level neuropathic pain after complete thoracic spinal cord injury to 11 people with similar injuries and no neuropathic pain and 21 age and gender matched healthy controls. Quantitative arterial spinal labelling was used to measure thalamic activity and magnetic resonance spectroscopy was used to determine changes in neuronal variability quantifying N-acetylaspartate and alterations in inhibitory function quantifying gamma amino butyric acid. This study revealed that the presence of neuropathic pain is associated with significant changes in thalamic biochemistry and neuronal activity. More specifically, the presence of neuropathic pain following spinal cord injury is associated with significant reductions in thalamic N-acetylaspartate, gamma amino butyric acid content and blood flow in the region of the thalamic reticular nucleus. Spinal cord injury on its own did not account for these changes. These findings support the hypothesis that neuropathic pain is associated with altered thalamic structure and function, which may disturb central processing and play a key role in the experience of neuropathic pain.
منابع مشابه
Analgesic Effect of Bumetanide on Neuropathic Pain in Patients With Spinal Cord Injury
Objectives: The current study evaluated the analgesic effects of bumetanide as an adjunctive in the management of neuropathic pain following spinal cord injury (SCI). The peripheral expression of Na-K-Cl cotransporter-1 (NKCC1) and K-Cl cotransporter-2 (KCC2) genes in polymorphonuclear lymphocytes (PMLs) was assessed as a possible biomarker indicating central mechanisms underlying the observed ...
متن کاملEffect of coenzyme Q10 on neuropathic pain threshold resulting from spinal cord injury in male rats
Introduction: Coenzyme Q10 is a powerful antioxidant that has the ability to reduce the damage caused by oxidative stress and is predominantly found in the inner mitochondrial membrane. This study was conducted to determine the effect of coenzyme Q10 on neuropathic pain in an animal model of spinal cord injury. Methods: In order to induce neuropathic pain, thoracic segments of the spinal cor...
متن کاملProton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury.
BACKGROUND AND PURPOSE Spinal cord injury (SCI) results in a number of consequences; one of the most difficult to manage is chronic neuropathic pain. Thus, defining the potential neural and biochemical changes associated with chronic pain after SCI is important because this may lead to development of new treatment strategies. Prior studies have looked at the thalamus, because it is a major sens...
متن کاملThe Effect of Four Weeks Low-Power Laser Irradiation(660 nm) on Thermal Hyperalgesia in the Model of Spinal Cord Injury Induced in Adult Male Rats
Introduction: Spinal cord injury is one of the important unresolved problems in the medical society leading to adverse consequences, such as motionlessness and neuropathic pain. Neuropathic pain is seen in both forms of hyperalgesia and allodynia. In this study, the effects of low-level laser radiation on hyperalgesia pain have been investigated. Material & Methods: In this experimental stu...
متن کاملCentral neuron-glia interactions and neuropathic pain: overview of recent concepts and clinical implications.
Eduardo E. Benarroch, MD Neuropathic pain results from injury or disease causing dysfunction at any level of the somatosensory (primarily spinothalamic) system, including peripheral nociceptive axons, dorsal root ganglion (DRG), dorsal horn, spinothalamic pathway, and thalamus. The manifestations of neuropathic pain, including spontaneous pain, hyperalgesia, and thermal and mechanical allodynia...
متن کامل